Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add filters

Database
Language
Document Type
Year range
1.
Molecules ; 28(2)2023 Jan 13.
Article in English | MEDLINE | ID: covidwho-2200547

ABSTRACT

The novel pathogenic virus was discovered in Wuhan, China (December 2019), and quickly spread throughout the world. Further analysis revealed that the pathogenic strain of virus was corona but it was distinct from other coronavirus strains, and thus it was renamed 2019-nCoV or SARS-CoV-2. This coronavirus shares many characteristics with other coronaviruses, including SARS-CoV and MERS-CoV. The clinical manifestations raised in the form of a cytokine storm trigger a complicated spectrum of pathophysiological changes that include cardiovascular, kidney, and liver problems. The lack of an effective treatment strategy has imposed a health and socio-economic burden. Even though the mortality rate of patients with this disease is lower, since it is judged to be the most contagious, it is considered more lethal. Globally, the researchers are continuously engaged to develop and identify possible preventive and therapeutic regimens for the management of disease. Notably, to combat SARS-CoV-2, various vaccine types have been developed and are currently being tested in clinical trials; these have also been used as a health emergency during a pandemic. Despite this, many old antiviral and other drugs (such as chloroquine/hydroxychloroquine, corticosteroids, and so on) are still used in various countries as emergency medicine. Plant-based products have been reported to be safe as alternative options for several infectious and non-infectious diseases, as many of them showed chemopreventive and chemotherapeutic effects in the case of tuberculosis, cancer, malaria, diabetes, cardiac problems, and others. Therefore, plant-derived products may play crucial roles in improving health for a variety of ailments by providing a variety of effective cures. Due to current therapeutic repurposing efforts against this newly discovered virus, we attempted to outline many plant-based compounds in this review to aid in the fight against SARS-CoV-2.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , Phytochemicals/pharmacology , Phytochemicals/therapeutic use , Attention
2.
Front Bioinform ; 1: 717141, 2021.
Article in English | MEDLINE | ID: covidwho-2089810

ABSTRACT

Coronavirus disease 2019 (COVID-19) is a potentially lethal and devastating disease that has quickly become a public health threat worldwide. Due to its high transmission rate, many countries were forced to implement lockdown protocols, wreaking havoc on the global economy and the medical crisis. The main protease (Mpro) of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative virus for COVID-19, represent an effective target for the development of a new drug/vaccine because it is well-conserved and plays a vital role in viral replication. Mpro inhibition can stop the replication, transcription as well as recombination of SARS-CoV-2 after the infection and thus can halt the formation of virus particles, making Mpro a viable therapeutic target. Here, we constructed a phytochemical dataset based on a rigorous literature review and explored the probability that various phytochemicals will bind with the main protease using a molecular docking approach. The top three hit compounds, medicagol, faradiol, and flavanthrin, had binding scores of -8.3, -8.6, and -8.8 kcal/mol, respectively, in the docking analysis. These three compounds bind to the active groove, consisting of His41, Cys45, Met165, Met49, Gln189, Thr24, and Thr190, resulting in main protease inhibition. Moreover, the multiple descriptors from the molecular dynamics simulation, including the root-mean-square deviation, root-mean-square fluctuation, solvent-accessible surface area, radius of gyration, and hydrogen bond analysis, confirmed the stable nature of the docked complexes. In addition, absorption, distribution, metabolism, excretion, and toxicity (ADMET) analysis confirmed a lack of toxicity or carcinogenicity for the screened compounds. Our computational analysis may contribute toward the design of an effective drug against the main protease of SARS-CoV-2.

3.
J Pers Med ; 12(8)2022 Aug 06.
Article in English | MEDLINE | ID: covidwho-2023829

ABSTRACT

Mortality and morbidity from influenza and other respiratory viruses are significant causes of concern worldwide. Infections in the respiratory tract are often underappreciated because they tend to be mild and incapacitated. On the other hand, these infections are regarded as a common concern in clinical practice. Antibiotics are used to treat bacterial infections, albeit this is becoming more challenging since many of the more prevalent infection causes have acquired a wide range of antimicrobial resistance. Resistance to frontline treatment medications is constantly rising, necessitating the development of new antiviral agents. Probiotics are one of several medications explored to treat respiratory viral infection (RVI). As a result, certain probiotics effectively prevent gastrointestinal dysbiosis and decrease the likelihood of secondary infections. Various probiotic bacterias and their metabolites have shown immunomodulating and antiviral properties. Unfortunately, the mechanisms by which probiotics are effective in the fight against viral infections are sometimes unclear. This comprehensive review has addressed probiotic strains, dosage regimens, production procedures, delivery systems, and pre-clinical and clinical research. In particular, novel probiotics' fight against RVIs is the impetus for this study. Finally, this review may explore the potential of probiotic bacterias and their metabolites to treat RVIs. It is expected that probiotic-based antiviral research would be benefitted from this review's findings.

SELECTION OF CITATIONS
SEARCH DETAIL